Wilms tumor gene protein 1 is associated with ovarian cancer metastasis and modulates cell invasion.

نویسندگان

  • Maria V Barbolina
  • Brian P Adley
  • Lonnie D Shea
  • M Sharon Stack
چکیده

BACKGROUND Although metastatic disease is the primary cause of death from epithelial ovarian carcinoma, to the authors' knowledge the cellular mechanisms that regulate intraperitoneal metastasis are largely unknown. Metastasizing ovarian carcinoma cells encounter a collagen-rich microenvironment because the submesothelial matrix is comprised mainly of interstitial collagens Types I and III. METHODS Immunohistochemistry using primary and metastatic ovarian carcinoma samples was employed to detect expression of Wilms tumor gene protein 1 (WT1). Three-dimensional (3D) collagen culture, real-time reverse transcriptase-polymerase chain reaction, and immunofluorescent staining were used to evaluate changes in WT1 RNA and protein expression in response to 3D collagen culture. Boyden chamber invasion assay, scratch-wound motility assay, and Western blot analysis were used to establish the function of WT1 in ovarian carcinoma cells. RESULTS To model intraperitoneal invasion in vitro, ovarian cancer cells were cultured in a 3D collagen microenvironment. 3D collagen culture resulted in robust induction of WT1 at the mRNA and protein levels. WT1 expression was prevalent in primary ovarian tumors and was retained in paired peritoneal metastases. Functional studies supported a role for WT1 in intraperitoneal invasion, because siRNA knockdown of WT1 expression reduced the ability of ovarian cancer cells to invade 3D collagen gels. CONCLUSIONS The data from the current study identify a novel regulatory mechanism for the control of WT1 expression and provide evidence for a functional role of WT1 protein in the control of cellular invasive activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform

Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis.  In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

ارتباط بیان ژن اوکلودین با مشخصات بالینی و مورفولوژیک سرطان پستان

Background: Breast cancer is the second most common cancer in the world after lung cancer also is the fifth cause of cancer mortality. About 90 percent of cancer mortality is because of metastasis and devastating between cell attachments, especially tight cell junctions. Epithelial mesenchymal transition is a phenomena involved in metastasis and starts with cell detachment. Occludin is the inte...

متن کامل

تعیین سطح بیان ژن‌های E-cadherin و Vimentin در نمونه‌های توموری بیماران مبتلا به سرطان تخمدان

Background: Ovarian cancer is a leading metastatic disease. The epithelial ovarian cancer is one of the most common malignant cancers that usually remains asymptomatic up to metastasis stages, and most patient when diagnosed are in the advanced stage of the disease. Studies have shown that in the majority of epithelial cancers mesenchymal factor expression such as Vimentin increases, and the ep...

متن کامل

Metastasis inhibition by BRMS1 and miR-31 replacement therapy in claudin-low cell lines

Objective(s): The growing trend of research demonstrates that dynamic expression of two metastasis repressor classes (metastasis suppressor genes and anti-metastatic miRNA) has a close relationship with tumor invasion and metastasis. Using different strategies, it was revealed that cellular levels of miR-31 and Breast cancer Metastasis Suppressor1 (BRMS1) protein, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer

دوره 112 7  شماره 

صفحات  -

تاریخ انتشار 2008